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Abstract — Robots are at the position to become our 

everyday companions in the near future. Still, many hurdles 

need to be cleared to achieve this goal. One of them is the fact 

that robots are still not able to perceive some important 

communication cues naturally used by humans, e.g. gaze. In the 

recent past, eye gaze in robot perception was substituted by its 

proxy, head orientation. Such an approach is still adopted in 

many applications today. In this paper we introduce 

performance improvements to an eye tracking system we 

previously developed and use it to explore if this approximation 

is appropriate. More precisely, we compare the impact of the 

use of eye- or head-based gaze estimation in a human robot 

interaction experiment with the iCub robot and naïve subjects. 

We find that the possibility to exploit the richer information 

carried by eye gaze has a significant impact on the interaction. 

As a result, our eye tracking system allows for a more efficient 

human-robot collaboration than a comparable head tracking 

approach, according to both quantitative measures and 

subjective evaluation by the human participants. 

I. INTRODUCTION 

Humans are very efficient collaborators, able to rapidly 
coordinate with each other, often with no need of detailed 
verbal instructions. This efficiency derives from the use of a 
wealth of communication cues to guide interaction, both 
explicit, as for instance gestures or speech, and implicit, as 
gaze. Implicit communication signals are those, which are not 
intended to carry information, but they do anyways and are 
fundamental for effective communication. For instance, when 
humans want to reach for an object, their gaze anticipates 
their hand on target. This implies that keen observers can 
predict the goal of their partner even before the beginning of 
the hand motion, just by looking at their eyes. When people 
turn their gaze to gather information, their eyes immediately 
give off where their visual attention is focused at and hence 
which object they want to take. 

Recently the importance of communication through gaze 
has been acknowledged also in robotics, even beyond the 
boundaries of purely social applications. For instance, in the 
field of small manufacturing, one of the key selling points of 
Baxter (Rethink Robotics) is its ability to seamlessly 
communicate its focus of attention thanks to its “eyes”, which 
make it easily understandable by non-trained collaborators. 
However, while the opportunity of using robot eyes to 
communicate has been already applied in the market, the 
possibility for a robot to observe humans’ eyes to anticipate 
their needs and intentions has not been widely used yet.   
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One reason for this lack of gaze tracking in robots might 
be the need for specific camera properties to calculate eye 
gaze direction. In particular, high resolution, narrow field-of-
view images are ideally required for such a computation, 
while robots are in general equipped with wide field-of-view 
cameras to be able to move and interact in a large 
environment. Some robots are also limited to lower 
resolution cameras for different reasons and for example 
network bandwidth utilization is prioritized for real time 
behavior (walking, balancing, etc.), and not for visual 
processing.  Light and shadow can affect this calculation as 
well. An alternative possibility is to use ad hoc hardware. 
However, standard gaze tracking devices are usually 
designed to be static, observing just one spot in space, while 
robots often need a solution that can deal with agents moving 
in space. The common solution adopted in experimental 
settings is then the use of head-mounted systems worn by the 
human partner. These are moving with the subject, but are 
intrusive and require that anyone wanting to interact with a 
robot wear special glasses or a helmet. This approach often 
limits the adoption of eye tracking in open environments (e.g. 
airports, shopping malls, hospitals, etc.) where robots could 
be required to interact with people with no prior preparation 
of the human partners.  

Because of the above problems concerning retrieving 
gaze in human robot interaction (HRI) a number of authors 
(see Chapter II) have resorted to using the so called “head 
gaze” instead of eye gaze. This choice was mostly made 
because head orientation is easier to compute. But the 
problem is that eye gaze does not always coincide with head 
gaze. People can make short glances at objects without 
moving their heads (e.g. checking the time or a wrist watch or 
glancing at a secondary screen). Indeed, eye gaze contains 
more information than head orientation only. Also for 
humans it has been proved that actual gaze direction 
estimation is significantly more precise when it is based also 
on eyes with respect to head only [1]. Moreover, in natural 
collaborative scenarios the objects are often close to each 
other and people tend to switch their focus of attention just by 
moving their eyes, yielding to minor or null head movements. 
The inability to read actual eye movements could then make 
the robot miss important information for an efficient 
interaction, like which object the human collaborator attends 
to.  

In this work we add performance improvements to our  
calibration-free, visual light, monocular eye gaze tracking 
algorithm designed to work on humanoid robots. This system 
enables a robotic platform to catch the subtle communication 
signals associated with human eye motion during 
collaboration with no need of ad hoc hardware or high 
resolution, narrow field-of-view cameras. Using this system 
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we then quantify which advantage an eye gaze sensitive robot 
could bring in a common interaction task with respect to the 
head gaze based solution commonly adopted. We consider a 
collaborative scenario in which human participants have to 
build a tower out of toy building blocks, in part handed over 
to them by the robot. We measure the fluidity of the 
interaction when the robot is programmed to monitor the eyes 
of the naïve subjects to detect which block they are interested 
in. Then we compare it with the performance in a condition 
in which the robot is only sensitive to head orientation. 

In this paper we will use the terms “head gaze”, “head 
pose” and “head orientation” interchangeably to describe the 
3D orientation of the head in space. To be precise, gaze by 
definition refers only to the direction in which the eyes are 
pointing in, but here we will use head gaze as an 
approximation of eye gaze. We will also alternate in using 
the terms “eye gaze tracking”, “eye tracking” and “eye gaze 
estimation” as synonyms.  

The next chapter will give an overview of previous work 
on head and eye gaze tracking in robotics, and position our 
study in this field. Chapter III will describe our gaze tracking 
system. Chapter IV will be dedicated to the experiment we 
designed to evaluate the efficiency of eye gaze tracking 
versus head gaze tracking alone. Chapter V will summarize 
our findings concerning the accuracy of the employed 
system, while subsequent chapters will discuss these results 
and propose conclusions.  

II. BACKGROUND 

There are a number of different approaches to 
implementing gaze tracking which can be divided along 
different lines. First, they can be divided into active and 
passive systems. Active trackers use infrared illumination 
and cameras to cast light to gain a better view of the eye. 
They are less effective in daylight and at greater distances. 
Passive systems work in visual light, thus being more 
natural, although more sensitive to lighting conditions. 
Another important distinction is between head mounted and 
remote solutions.  Head mounted systems require the human 
partner to wear cameras mounted either on helmets or 
spectacle frames. Helmet systems can provide high quality 
eye tracking results, but their weight renders them 
impractical for extensive use. Glass mounted systems are 
gaining popularity as they are lightweight and accurate. 
Remote systems, which track gaze from a location not 
connected to the human, can suffer from lower quality eye 
images, but work with no effort from the human side. Eye 
tracking solutions might also be differentiated on the basis of 
whether they require a calibration or not. Although the 
former option provides higher precision in gaze detection, 
the latter avoids any tedious calibration procedure and it 
makes it possible to interact with people “on the fly”, with 
no prior preparation. 

The approach that we believe more promising for 
robotics, and in particular for robot companions, is passive 
remote calibration-free gaze tracking. This choice indeed 
guarantees the highest degree of naturalness in the 
interaction. With such a gaze tracker a robot could read the 
user’s gaze seamlessly, with no need for additional hardware 
(e.g. to produce infrared light), no physical encumbrance to 

potential interacting partners (e.g., helmet or glasses), nor 
need for preparation to the interaction (for calibration 
purposes). Thus in the rest of this chapter we will be 
focusing on this type of gaze tracking systems. 

In the field of human robot interaction it has become a 
common practice to replace eye gaze with its approximation, 
head gaze. Doniec et al. describe a method for learning joint 
attention by a robot [2]. In their approach the robotic agent 
observes the caregiver’s gaze towards certain objects. 
However, eye gaze is replaced by head pose, because the 
authors claim that eye gaze was not possible to extract due to 
the low resolution of their cameras. Using a Radial Basis 
Function Network they were able to train the robot to 
recognize joint attention towards a number of objects on a 
table and then recognize the selection of objects based on 
head pose. They report a recognition rate of 95% when 
testing is done with the same person as training, but 62% 
when different people are used in training and testing. 

Kim et al. reported on a robotic system capable of 
learning gaze following [3]. They used head pose estimation, 
because they did not have an eye gaze tracking system 
available. Their system was able to learn correct associations 
between the caregiver’s head pose and corresponding motor 
actions using offline reinforced learning. 

Ivaldi at al. presented an experiment on robot initiative 
during a collaborative task with a human [4]. In this 
publication eye gaze is replaced by head orientation, acquired 
using an RGB-D sensor. They claim to be able to detect head 
yaw with the accuracy of 93%. The authors underline that 
such an estimation of gaze is inaccurate, but that it has the 
advantages of not necessitating external eye tracking devices 
or high resolution cameras, keeping the interaction natural 
and non-invasive.   

Sheiki and Odobez explore attention recognition in HRI 
[5]. They claim that most current systems approximate gaze 
with head pose because eye gaze estimation is often 
impossible to achieve. The authors use a Hidden Markov 
Model to dynamically decode the visual focus of attention. 
They propose using context to improve the detection of visual 
attention.  

Nagai et al. conducted a study on how a robot could learn 
joint attention [6]. A neural network was used to associate the 
visual appearance of a caregiver’s face with object angular 
displacements. The term gaze is used throughout the 
publication, but the objects of learning are face images, with 
distinct head and eye rotations. The authors emulated visual 
development by de-blurring blurred images of the caregiver. 

In the above publications [2,3,4,5] authors either used 
direct substitution of gaze with head pose or utilized 
contextual information for training their machine learning 
methods. Sheiki and Odobez [5] in addition to context also 
used dynamic mapping from body posture to gaze using head 
pose. As we aim to make a general system, independent of 
context, in this study we use head pose as a direct substitution 
for gaze and compare it to eye gaze itself.   

Admoni et al. performed an experiment from the opposite 
point of view: humans observing a robot’s gaze [7]. The 
humanoid in question was HERB which was programmed to 



  

hand over objects while performing different gaze actions: 
natural gaze, joint attention and mirrored gaze. The authors 
mention the robot’s eye gaze, even though the robot’s head 
consists of a camera and a microphone mounted on a 
platform with a pan/tilt mechanism. The authors find that it is 
possible to influence the conversation even with an 
approximation of a robot head.     

All these results show that head orientation might provide 
a useful approximation for eye gaze in human-robot 
applications under certain conditions.  However, it is often 
suggested that this solution is less accurate than having 
access to eyes gaze (e.g. [4]). The technical issues or the non-
naturalness of the adoption of traditional eye trackers though 
forced the choice of this approximation, although no 
quantification of the information loss has been done so far.   

On the other hand, there are already studies where actual 
eye gaze tracking is used in humanoid robots. As one of the 
pioneers of this field Matsumoto and Zelinsky developed an 
eye gaze tracking system [8] which was implemented on the 
HRP2 humanoid robot [9]. They use a least squares method 
to align certain features on the user’s face with a 3D face 
model. Once the face is tracked, an eye model is applied to 
the image of the eyes to estimate gaze direction. They used 
this gaze tracking system on a humanoid robot in a dialog 
scenario, to appropriately detect eye contact with participants.  

On a similar vein our group has developed a mutual gaze 
detection system using which we were able to control a turn 
taking scenario on the iCub humanoid robot [10]. In this 
study the robot waited for the user to glance back at it, before 
continuing to dictate sentences. We then expanded this 
detection algorithm into a full-fledged modular eye tracking 
system [11], achieving accuracies of 5 degrees average 
absolute error in horizontal gaze estimation.  With this 
system we completed a proof of concept HRI experiment in 
which we found that the robot was able to understand which 
object to hand over to its human partner by using only gaze 
information. 

 Our current study is a continuation of this line of 
research, where we present an improved version of our gaze 
tracking robot and we confront its performance (based on 
eye gaze) with its traditionally accepted approximation 
“head gaze” in a common HRI scenario.  

III. APPROACH – EYE GAZE TRACKING 

In the following we will shortly describe our original eye 
gaze tracking system first introduced in [11] and emphasize 
the performance improvements we made since then. 

We implemented a model-based, visual light, monocular, 
calibration-free, remote gaze tracking algorithm, using 
existing head pose and face feature tracking algorithms (see 
Figure 1). Head pose was calculated using the Constrained 
Local Models (CLM) approach implemented by Baltrusaitis 
[12]. It provided us with the head orientation that is directly 
used in the head gaze experimental condition as well as in 
calculating the eye gaze. Face features were found using the 
approach described in [13] and implemented by King in 
[14]. This provided us with robust tracking of locations like 
the corners of the eyes and mouth. Once the eye region was 
located we used averaging methods to find the center of the 

darkest area of the eye, which approximates the center of the 
pupil, due to the light color of the sclera. Once we found the 
locations of the eye corners, pupil center and head 
orientation, we applied these points to an eye model with the 
goal of calculating gaze angles. The parameters of this 
model were estimated in a least squares approach on the 
Columbia gaze dataset. The approach was adopted from 
[15]. This allowed us to create an eye model for a “generic 
subject”, thus eliminating calibration for each new user. We 
verified the newly obtained eye gaze model by assembling 
our own gaze dataset using the iCub’s eyes. We found that 
the mean absolute error in horizontal gaze was around 5 
degrees, while for the vertical gaze it was 9 degrees. The 
larger error in vertical gaze detection stems from the fact that 
when people look down their upper eyelids covered most of 
their eyes, which in turn causes imprecisions in detecting the 
eye corners and pupil center. None the less the robot 
equipped with this system can reliably understand which 
objects are gazed upon by its interacting partner [11].  

The original system had a slow throughput rate, at 
around 7 frames per second (FPS), mainly due to the 
computational complexity of the face features detection 
algorithm. In our current approach we were able to optimize 
its performance, by performing face detection only in the 
area where the previous frame contained a face. Once a face 
is lost, the face detection is performed again on the full 
frame (1024x768 pixels). This allowed us to achieve 
framerates of around 22 FPS (see Figure 2), which was 
adequate for capturing even faster eye movements. To deal 
with possible momentary glitches triggering gaze events in 

Figure 1. Eye tracking system diagram. 
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Figure 2. Example output of our eye tacking system. White lines from 

eyes – eye gaze, black line from top of the nose – head gaze. 
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our robot, we applied temporal smoothing of the gaze signal 
with an averaging filter window of around 1s. This 
smoothing also allowed us to distinguish between glances 
down and blinks, which look like very short downward 
glances, increasing the robustness of the system. These 
changes made the estimated gaze signal more robust and 
precise. 

IV. THE EXPERIMENT 

In order to evaluate whether eye gaze can be substituted 
by head gaze with no significant loss of information, we 
constructed a human robot interaction scenario involving 
three agents: an experimenter, the robot and the subject, see 
Figure 3. The subjects started each experiment facing the 
robot. Even though they could not move their legs freely 
(due to iCub’s platform), during the experiment they moved 
their upper body and head to face both agents. As it can be 
seen in Figure 3, the separation between the robot’s two 

arms was around 50⁰ as seen from the perspective of the 
subject. This separation was dictated by robot kinematics 
and the need to sit the subject as close to the robot as 
possible (~100cm) for more precise gaze tracking while 
maintaining a comfortable social distance. 

We had two experimental conditions: eye gaze and head 
gaze. The task of the subject was to build a tower out of four 
toy building blocks. At the beginning of each build, the four 
blocks were located in each of the hands of the experimenter 
and the robot. The blocks were numbered from 1 to 4, but 
these stickers were visible only to the subject (to prevent 
them from asking for the block by number). The blocks 
needed to be stacked on the provided table in ascending 
order. The subjects were instructed that they had to take the 
blocks, which they needed to ask for, only after they were 
offered to them. We did not tell them what interaction 
modality to use to achieve this offering motion - a movement 
of the hand up and towards the subject. 

The robot was programmed to react either to the eye 
motion or head motion, namely eye gaze and head gaze 
conditions respectively. The sequence triggering the offering 
motion for the first condition was the subject’s glance first at 

the face of the robot and then at one of the hands (Figure 4a) 
or first at one of the hands and then at the face (Figure 4b).  
This  activation  sequence  was  inspired  by  the definition 
of joint attention, which requires not only that two agents  
look  at  the  same  object,  but  also  that  they  are  aware of  
the  attention  target  of  the  other,  an  awareness  often 
obtained by establishing eye contact before and/or after gaze 
following. In the head gaze condition, eye gaze was replaced 
by head movements from and to the face and hands. 

Since our vertical gaze detection is less accurate than 
horizontal, we set fixed box boundaries of where the gaze 
originated from but did not do so for the end point. Rather 
we looked at how much of a vertical displacement over time 
there was from the initial upper (head) or lower (hands) gaze 
boxes, i.e. we looked at the vertical angular velocity. The 
thresholds for these velocities were selected based on testing 
with five pilot subjects in order to minimize both false 
positives and false negatives in triggering the offering 
actions in both conditions. For the gaze option the threshold 
was set to 20 degrees change per second, while for the head 
pose it was 2 degrees pitch over one second. For example in 
the head gaze option if the gaze started from the head box 
and pitched down at a rate greater that 2 degrees per second 
towards one of the hands the hand offering action would be 
triggered. The left hand was selected for movement if the 
pitch was towards down-left, the right if it was toward 
down-right. The actual vertical displacement needed to turn 
one’s attention from the robot’s eyes towards the block in 
the hand was around 30 degrees. The big difference between 
the triggering thresholds for eyes and head was due to the 
fact that all pilot subjects tended to cover this angular 
distance with larger movements of their eyes and a smaller 
rotation of their head. 

Importantly, both in the eye gaze and in the head gaze 
conditions the robot was only sensitive to subjects’ eye/head 
gaze and disregarded any other source of information 
(speech, pointing, and gestures). Subjects however were not 
aware of this limitation and hence behaved naturally toward 
the robot, as if it could perceive all these other signals. This 
approach allowed us to single out the effectiveness of 
eye/head gaze tracking alone, without any influence on the 
natural pattern of interaction chosen by human participants. 
In situations when the robot had only one block in its hands, 
we didn’t apply the common sense logic and hand over the 
only available block when gaze tracking indicated the empty 
hand. We still offered the hand selected by gaze (even if it 
was empty) because we wanted to test the performance of 
our eye tracking system. 

The subjects were asked to complete 5 towers for each of 
the two conditions. The order of the conditions was counter 
balanced. The order of the blocks in the hands was pseudo 
random, making sure even distribution of different numbered 

 
Figure 4. Gaze actions triggering robot reaction: a) gazing at face then 

one of the hands and b) gazing at a hand then at face. 

 

 

 

Figure 3. Experimental setup. 
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blocks in hands. The conditions were named Alpha and Beta 
for the subjects. Before the experiment the participants filled 
out an institutional consent form, while after the experiment 
they filled out an experiment questionnaire asking them to 
compare the two conditions and a personality questionnaire. 

The subjects received written instructions about what 
they were expected to do. Using text-to-speech the iCub 
explained once again the task. It was also saying sentences 
like “Let’s do it again”, “Let’s build another tower” at the 
beginning of each task. At the beginning of each session 
iCub reminded the subjects if it was Alpha or Beta. At the 
end it thanked the participants for taking part in the 
experiment. During the whole experiment the robot was 
programmed to follow the subject’s face with its gaze. The 
iCub platform performed saccades which approximated 
human oculomotor actions: first turning its eyes towards the 
participant’s face and then following with the head, while 
reproducing the vestibulo-ocular reflex, thus providing a 
natural interaction experience (see accompanying video to 
understand how the robot behaved). 

V. RESULTS 

The experiment was completed by 10 subjects (3 females 
and 7 males) with a mean age of 34.6 years. Two of the 
subjects wore eye glasses, and one was wearing lenses. 
These seeing aids did not stop the eye tracking algorithm 
from inferring the participants’ gaze. 

First we looked at the success rate of task completion 
(Table 1). All subjects managed to complete all tasks using 
eye gaze, but 5 out of 50 tasks could not be completed in the 
head condition, because 2 subjects just could not trigger the 
robot reaction in some trials.  

TABLE 1. TASK COMPLETION SUCCESS RATE. 

 total tasks completed tasks completion rate 

head gaze 50 45 90% 

eye gaze 50 50 100% 

Secondly, we analyzed task completion time to see if 
subjects were quicker with any of the two interaction modes. 
It turned out that using eye gaze, tasks were done much 

faster than using head gaze, see Figure 5. Applying a paired 
t-test we found that the difference between the two 
conditions is statistically significant with t(9)=3.171, 
p=0.011.  

Next we looked at two measures of how successful the 
robot was in understanding human gaze behavior: 1) if the 
robot was able to detect if it was its own turn or the 
experimenter’s turn to react, 2) within the successfully 
detected turns to react, how many times was the robot able to 
hand over the proper block. The results can be found in 
Table 2. 

TABLE 2. AVERAGE TURN DETECTION AND HANDOVER ACCURACY RATE 

WITH STANDARD ERROR IN BRACKETS. 

 turn detection rate proper block handover 

head gaze 83.8% (3.4) 60.6% (6.1) 

eye gaze 84.9% (4.2) 81.5% (5.1) 

 

We must note that in our analysis we only counted 
situations in which the robot could be able to detect actions 
in its own interaction mode. For example, in head mode we 
only counted as false negatives cases when there was any 
detectable head movement from the subject but the robot did 
not react. The same procedure was applied for the eye mode. 
This was determined by the first author by reviewing and 
annotating the experiment videos.   

From Table 2 it can be seen that in both conditions the 
robot was performing very similarly at detecting its own 
turn. The erroneous detections came mostly from transition 
periods: when the subjects were depositing the blocks on the 
table or when turning away from the robot to ask the 
experimenter for the next block. On the other hand there is a 
huge difference in success rates of handing over the proper 
block to the subject. In this measure the head gaze option 
was successful only around 60% of the time, while in the eye 
gaze option the robot successfully handed over about four 
out of five blocks. To further analyze these data, we looked 
at how many times the robot lifted its arm (attempt) before 
handing over the proper block once it accurately determined 
its turn (see Figure 6). For the head gaze option there were 
more cases when the robot was not able to tell the subject’s 
desired block repeatedly (15%). This means that the subjects 
performed the same actions but repeatedly got the wrong 
block. This number was only 4% for the eye gaze condition. 

 

Figure 5. Task completion time averages over all subjects. Error bars 

represent +/- 1standard error. “*” indicates significant difference  

in a paired t-test. 
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Figure 6. How many offering motions it took before the robot handed 

over the proper block. “At first”: the robot lifter the proper arm at once. 

“At second”:  the robot lifted its wrong arm before lifting the proper 

one. “At more”: there were more than one wrong arm lifts before the 

proper one. 

 



  

The main reason for low numbers in proper block 
handover during head gaze lies in the fact that there was 
barely any head pitching from the subjects when they were 
asking for the blocks. They seem to have preferred to use 
their eye gaze, pointing and oral commands instead. There 
was also an interesting phenomenon on which we didn’t 
count: some of the subjects rolled their heads while trying to 
get the objects. This was mostly the case when the robot did 
not react right away to their command. In this case they 
would roll their heads towards the block and keep it that way 
until the task was over. Neither of our eye gaze nor head 
gaze detection algorithms accounted for head roll, which 
might have caused a lot of the misrecognitions: we only 
expected pitching (nod) and yawing of the eyes and head. 

In the experiment questionnaire we asked the participants 
to rate the likability, efficacy and smartness of the robot 
based on the two interaction conditions. We offered them a 7 
level Likert scale to rate their answers. Figure 7 summarizes 
these subjective results. We found that although participants 
liked both modes of interaction (no significant difference in 
likability, paired t-test t(9)= -2.022, p=0.074), they judged 
the robot as being significantly smarter and more efficient in 
the eye gaze condition (t(9)= -2.689, p=0.025 and t(9)=  
-3.737, p=0.005 respectively).  

When asked how the robot knew which object to hand 
over, four out of ten subjects didn’t mention gaze in any 
way, four thought it was some combination of voice 
commands, gaze and gestures, while two were correct in 
thinking that it based its decision on gaze only. 

VI. DISCUSSION 

The results of our collaborative building experiment 
show that enabling a robot to read eye gaze rather than 
approximating it with head gaze can bring significant 
advantages. When iCub monitored eye gaze, all subjects 
managed to complete all trials of the interaction, on average 
in less than 40s per trial. When relying on head gaze only, 
the interaction was slower and less effective:  in five cases 
the subjects were not even able to complete their task (10% 
failure of all interactions) with the head gaze option.  

Moreover, from the pie charts in Figure 6 it can be 
noticed that the eye gaze option recognizes gaze behavior 

much better even at the first attempt, while for head gaze, 
there are much more cases of repeated failures. This means 
that subjects will try over and over again the same thing and 
will grow quite frustrated by the robot’s poor performance.  

We believe that this is not due to a basic malfunctioning 
of the head tracking system or due to a wrong choice of its 
parameters (motion activation thresholds). Indeed, it must be 
noted that some of the subjects had no problem in 
completing the tasks when the robot reacted to their head 
pose and were almost as effective with this approach as with 
eyes. Moreover, even for the subjects who failed in some 
trials, the interaction was successful in the other repetitions. 
This finding convinces us that we selected the robot motion 
activation thresholds well, but head movement alone is less 
informative than eye movement. In particular, head motion 
was sometimes negligible (or non-existent), not providing 
the right trigger for robot action. 

An interesting finding is that while head-based gaze 
estimation seems good enough for turn change detection, it 
is not as good for object recognition. We speculate that this 
result derives from the way humans naturally direct their 
attention. The change of turn implied a change of the 
selected interaction partner. In this process we usually make 
sure, even unconsciously, that the partners acknowledge to 
be targeted, to maximize their responsivity. Therefore, 
participants on average fully oriented themselves toward the 
current partner, with both head and eyes. Once the attention 
of the helper has been gained, it is assumed that they/it will 
easily understand what we need following our indications. 
Hence, head movements toward objects become more subtle 
or even disappear, not providing any more information.  

Of course if subjects were instructed to guide the robot 
with their eyes or with their head movements, the 
performances would have been much better. However, our 
results show that the use of eye-based gaze detection allows 
for an efficient and smooth interaction even with fully naïve 
subjects, who behave with the robot as if it was a natural 
interaction partner. Using head gaze instead of eye gaze with 
unknowing subjects might lead instead to more 
unpredictable results.  

Also the subjective results are quite informative of the 
fact that participants thought more positively of the better 
functioning option. Although there is no significant 
difference in likability, the eye gaze option was evaluated to 
be much more efficient and an indication of a smarter robot. 
It was interesting to see that in the eye gaze condition all 
tasks were completed successfully by all participants even 
though the majority (80%) of them did not realize that the 
robot responded to their gaze only.    

Even though the eye gaze option performed well, there is 
still much room for improvement. One way to do this is to 
account for head roll in the algorithm. Another way would 
be to use some kind of calibration approach to increase the 
vertical accuracy of gaze estimation. To avoid a full gaze 
calibration, which would require a tedious ad hoc 
preparation to the interaction, a soft calibration is considered 
as a valid alternative. For example the robot could adjust its 
human eye model parameters at certain times when it knows 
from context that the subject is looking at its eyes. This is 

 

Figure 7. Subjective ratings of the two interaction types. Error bars 

represent +/- 1standard error. “*” indicates statistically significant 

difference. 
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why we introduced the initial speaking phase of the robot. 
We assumed that while the robot speaks, the subjects would 
be looking at its eyes. At first glance at the data we can 
assume that this is mostly correct, but further in depth 
analysis is needed. 

VII. CONCLUSION  

A current challenge in robotics is to enable robotic 
companions in real life circumstances to communicate with 
their human counterparts more naturally. Our study shows 
how the ability to read human eye gaze represents a 
fundamental element to achieve this goal. In particular, we 
demonstrated that a humanoid robot enabled with eye gaze 
tracking abilities can successfully perform a collaborative 
building task with human partners completely naïve towards 
the reaction modality of the robot.  

This work quantified also the impact on the interaction of 
head-based and eye-based gaze tracking. While for turn 
taking, monitoring the head motion provided similar results 
as monitoring the eyes, in an object selection task eyes 
provided an increase in efficiency of about 20 percentage 
points. As a whole, the eye gaze based interaction was on 
average 43% faster and was also perceived by participants as 
qualitatively more efficient. Therefore, it is not always a 
good idea to approximate eye gaze with head pose in human 
robot interaction experiments. 

We agree with some of the other authors (e.g. see 
Chapter II) that if eye gaze is not available it might be 
sufficient to use head pose as the first proxy. For instance, 
head gaze detection might work if the head rotation angles 
are exaggerated, as for far away objects or when subjects are 
instructed to use head motion. However, eye gaze tracking 
allows for a much finer scale of detection and does not 
require from the human partners to change their natural 
interactive behavior. 

We want to underline that with this research we don’t 
imply that eye gaze should be the only cue a robot should 
use in interaction scenarios like the one we presented. 
Rather, we want to demonstrate that even gaze alone carries 
enough information to allow for task completion. The 
integration of the information derived from our eye gaze 
tracking system with the processing of other signals as 
pointing and speech could lead to a very robust interactive 
robot.  

To conclude, our open source eye tracking algorithm for 
robotics, based on standard cameras, could significantly 
improve the naturalness and efficiency of future robot 
companions, by eliminating the need of head-based 
approximations of gaze direction, which in certain contexts 
could lead to a much less efficient interaction.  
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